If x satisfies the equation log2(1+4x)+log2(1−4x+4)=2log2(2x−1−1), then find the sum of squares of values of x.
Open in App
Solution
log2(x+4x)+log2(xx+4)=2log2(3−xx−1) ⇒2log2(x+4x)=2log2(3−xx−1) ⇒log(x+4x)=±log(3−xx−1) Case 1: ⇒x+4x=3−xx−1 ⇒x=±√2 ⇒x=√2 is the only solution since it lies the domain. Case 2: x+4x=x−13−x ⇒x=±√6 ⇒x=√6, lies in the domain.