If x satisfies the equation log(1+4x2−4x)−12log(19+x2)=log(1−2x), then find |x|
Open in App
Solution
log(1+4x2−4x)−12log(19+x2)=log(1−2x) Clearly x<12. Rewrite the equation as log(1−2x)2−12log(19+x2)=log(1−2x)[∵1+4x−4x2=(1−2x)2] ⇒2log(1−2x)=log(19+x2)[∵logam=mloga] ⇒1−4x+4x2=19+x2⇒x=2−√583