If x=secΦ-tanΦ,y=cosecΦ+cotΦ, then
x=y+1y-1
x=y-1y+1
y=1+x1-x
None of these
Explanation for the correct option.
Step 1:Simplify x
x=secϕ-tanϕ=1cosϕ-sinϕcosϕ=1-sinϕcosϕ
Step 2:Simplify y
y=cosecϕ+cotϕ=1sinϕ+cosϕsinϕ=1+cosϕsinϕ
Step 3: Find the value of xy+x-y+1
xy+x-y+1=1-sinϕcosϕ×1+cosϕsinϕ+1-sinϕcosϕ-1+cosϕsinϕ+1=1+cosϕ-sinϕ-cosϕsinϕcosϕsinϕ+1cosϕ-sinϕcosϕ-1sinϕ-cosϕsinϕ+1=1cosϕsinϕ+1sinϕ-1cosϕ-1+1cosϕ-sinϕcosϕ-1sinϕ+cosϕsinϕ+1=1cosϕsinϕ-sinϕcosϕ+cosϕsinϕ=1-sin2ϕ+cos2ϕcosϕsinϕ=0
So, xy+x-y+1=0⇒xy+1=y-1⇒x=y-1y+1
Hence, option B is correct.