Given,
x=sint,y=cos2t ......(1)
Differentiating this equation with respect to ‘t’ and we get,
dxdt=ddtsint, dydt=ddtcos2t
dxdt=cost ,
dydt=−sin2t(ddt2t)
dxdt=cost ,
dydt=−2sin2t ......(2)
dydx=dydtdxdt or dydx=dydt×dtdx
Put the value of equation (2) in dydx, and we get,
dydx=dydtdxdt
=−2sin2tcost
=−2(2sintcost)cost
=−2×2sint
=−4sint
Hence, It is required solution.