wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x1+y+y1+x=0, prove that dydx=1(x+1)2

Open in App
Solution

x1+y given

x1+y+y1+x=0

x1+y=y1+x

Squaring on both sides we obtain

x2(1+y)=y2(1+x)

x2+x2y=y2+y2x

x2y2=y2xx2y

(x+y)(xy)=xy(yx)

x+y=xy

xy+y=x

y=x1+x
differentiating both sides w. r. t. x
dydx=(1+x)ddx(x)xddx(1+x)(1+x)2=(1+x)x(1+x)2=1(1+x)2

dydx=1(1+x)2

Hence proved

1081078_1020782_ans_f6ceaaea3246495c82a970f6e59bb754.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon