The correct option is C −(3t2+1)sint+6tcost(3t2+1)2
x=t3+t+5 & y=sint
Differentiate x and y w.r.t. 't'
dxdt=ddt(t3+t+5)
=3t2+1 ..........(1)
dydt=ddtsint
=cost ..........(2)
From 1 and 2
dydx=cost3t2+1
d2ydx2=(3t2+1)ddxcost−costddx(3t2+1)(3t2+1)2
=−((3t2+1)sint+6t.cost)(3t2+1)2