wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xyyx=1 , then the value of dydx is :

Open in App
Solution

xyyx=1y1=xylogy1=ylogxdydx=xy(yx+logx.dydx)y2=yxlogy2=xlogydy2dx=yx(xy.dydx+logy)xy(yx+logx.dydx)=yx(xy.dydx+logy)y.x41+xylogx.dydx=xyx1dydx+yxlogy(xylogxxyx1)dydx=yxlogy4xy1dydx=(yxlogyyxy1xy.logxxyx1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon