If x+y+z=8 and xy+yz+zx=20, find the value of x3+y3+z3−3xyz.
We know that
x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−xy−yz−zx)Now,x+y+z=8Squaring, we get⇒(x+y+z)2=(8)2⇒x2+y2+z2+2(xy+yz+zx)=64⇒ x2+y2+z2+2×20=64⇒ x2+y2+z2+40=64⇒ x2+y2+z2=64−40=24Now,x3+y3+z3−3xyz=(x+y+z)[x2+y2+z2−(xy+yz+zx)]=8(24−20)=8×4=32