If x,y,z are positive real numbers such that log2xz=3,log5yz=6 and logxyz=23, then the value of 12z is
Open in App
Solution
lnzln(2x)=3 and lnzln5y=6 Or ln2xlnz+ln5ylnz=13+16=12. Or ln(2x)+ln(5y)ln(z)=12 Or ln(10xy)lnz=12 Or ln10lnz+ln(xy)lnz=12 Or ln10lnz+32=12 Or ln10lnz=−1 ln(z)=110 z=110 Hence 12z=102=5