1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Other
Quantitative Aptitude
Solving Inequalities
If x, y, z ar...
Question
If x, y, z are positive real numbers such that
x
+
y
+
z
=
3
, then find the minimum value of
1
x
+
1
y
+
1
z
.
Open in App
Solution
Consider the terms to be
x
,
y
,
z
A.M
=
x
+
y
+
z
3
=
1
G.M
=
3
√
x
y
z
1
≥
3
√
x
y
z
.
.
.
.
.
(
1
)
Now, consider the terms to be
1
x
,
1
y
,
1
z
A.M
=
1
x
+
1
y
+
1
z
3
G.M
=
3
√
1
x
y
z
.
.
.
(
2
)
(
1
)
×
(
2
)
1
x
+
1
y
+
1
z
3
≥
1
1
x
+
1
y
+
1
z
≥
3
Minimum value
=
3
Suggest Corrections
0
Similar questions
Q.
If three positive real numbers x,y,z are in A.P such that xyz = 4, then what will be the minimum value of y?
Q.
If x + y + z = 1 and x,y,z are positive numbers such that
(
1
−
x
)
(
1
−
y
)
(
1
−
z
)
≥
k
x
y
z
, then exact value of k is equal to
Q.
If
x
,
y
,
z
are real numbers such that
√
x
−
1
+
√
y
−
2
+
√
z
−
3
=
0
then the values of
x
,
y
,
z
are respectively
Q.
If x + y + z = 1 and x, y, z are positive numbers such that
(
1
−
x
)
(
1
−
y
)
(
1
−
z
)
≥
k
x
y
z
, then k =
Q.
If x, y and z are positive real numbers such that x+y+z=a then