Applying Cauchy- Schwarz inequality to the two sets of numbers
x32,y32,z32;
x12,y12,z12
we have
(x32.x12+y32.y12+z32.z12)2≤(x3+y3+z3)(x+y+z)
(x2+y2+z2)2≤(x3+y3+z3)(x+y+z)...........(1)
Applying Cauchy Schwarz inequality to the two sets numbers x, y, z ; 1, 1, 1
(x+y+z)2≤(x2+y2+z2)(1+1+1).........(2)
Squaring (1)
(x2+y2+z2)4≤(x3+y2+z3)2(x+y+z)2
Combining (3) and (2)
(27)4≤(x3+y2+z3)2(x+y+z)2.3
(27)4≤(x3+y2+z3)2.27.3
38≤(x3+y2+z3)2
⇒(x3+y2+z3)2≥(34)2
x3+y3+z3≥81.