wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x13 y7=x+y20, prove that dydx=yx

Open in App
Solution

We have, x13y7=x+y20
Taking log on both sides,
logx13y7=logx+y2013logx+7logy=20logx+y
Differentiating with respect to x using chain rule,
13ddxlogx+7ddxlogy=20ddxlogx+y13x+7ydydx=20x+yddxx+y13x+7ydydx=20x+y1+dydx7ydydx-20x+ydydx=20x+y-13xdydx7y-20x+y=20x+y-13xdydx7x+y-20yyx+y=20x-13x+yxx+ydydx=20x-13x-13yxx+yyx+y7x+7y-20ydydx=yx7x-13y7x-13ydydx=yx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon