If x2+1x2=7 then find the value of x3+1x3 using only the positive value of x+1x.
Given: x2+1x2=7
Adding 2 on both the sides, we get,
⇒x2+1x2+2=7+2
⇒x2+1x2+2×x×1x=9
⇒(x+1x)2=32
⇒x+1x=±3
∴x+1x=3
Cubing both the sides, we get,
⇒(x+1x)3=33
⇒x3+1x3+3(x)(1x)(x+1x)=27
⇒x3+1x3+3(3)=27
⇒x3+1x3=27−9
∴x3+1x3=18