The correct option is C 14
Given that
xy=ex−yTaking log both sides with base e, we get⇒y log x=x−y⇒y(1+log x)=x⇒y=x1+log xDifferentiating w.r.t. x both sides, we get⇒dydx=(1+log x)⋅1−x⋅1x(1+log x)2⇒dydx=1+log x−1(1+log x)2⇒dydx=log x(1+log x)2At x=e(dydx)x=e=log e(1+log e)2=14