wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xy+yx=x+yx+y, find dydx

Open in App
Solution

We have, xy+yx=x+yx+yelogxy+elogyx=elogx+yx+yey logx+ex logy=ex+y logx+y

Differentiating with respect to x using chain rule and product rule,
ddxey logx+ddxex logy=ddxex+ylogx+yey logxyddxlogx+logxdydx+ex logyxddxlogy+logyddxx=ex+ylogx+yddxx+ylogx+yelogxyy1x+logxdydx+elogxxydydx+logy1=elogx+yx+yx+yddxlogx+y+logx+yddxx+yxyyx+logxdydx+yxxydydx+logy=x+yx+yx+y1x+yddxx+y+logx+y1+dydxxy×yx+xy logxdydx+yx×xydydx+yxlogy=x+yx+y1×1+dydx+logx+y1+dydxxy-1× y+xylogxdydx+yx-1× xdydx+yxlogy=x+yx+y+x+yx+ydydx+x+yx+ylogx+y+x+yx+ylogx+ydydxdydxxylogx+xyx-1-x+yx+y1+logx+y=x+yx+y1+logx+y-xy-1×y-yxlogydydx=x+yx+y1+logx+y-yxy-1-yxlogyxylogx+xyx-1-x+yx+y1+logx+y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon