If y=1−cosθ,x=1−sinθ, then dydx at θ=π4 is
Prove the following trigonometric identities:
Prove that:
(i) √sec θ−1sec θ+1+√sec θ+1sec θ−1=2 cosec θ
(ii) √1+sin θ1−sin θ+√1−sin θ1+sin θ=2 cosec θ
(iii) √1+cos θ1−cos θ+√1−cos θ1+cos θ=2 cosec θ
(iv) sec θ−1sec θ+1=(sin θ1+cos θ)2