The correct option is A n2y
Since y1/n={x+√(1+x2)}
or y=(x+√1+x2)n
∴y1=(x+√1+x2)n−1(1+x√1+x2)
√(1+x2)y1=n(x+√1+x2)n
√(1+x2).y1=ny
Squaring both sides
∴(1+x2)y21=n2y2
Differentiating both sides w.r.t. x
∴(1+x2)2y1 y2+y21.2x=2n2yy1
2y1≠0
∴(1+x2)y2+xy1=n2y