If y=(1+x)(1+x2)(1+x4)……(1+x2n), then dydx at x=0 is
A
-1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 1 Since, y=(1+x)(1+x2)(1+x4)……(1+x2n),(1−x)y=(1−x2)(1+x2)(1+x4)……(1+x2n) =(1−x4)(1+x4)…(1+x2n)…ldots=(1−x2n)(1+x2n=1−x2n+1 ∴y=1−x2n+1(1−x) ∵dydx=(1−x)(−2n+1.x2n+1)−(−1−2n+1)(−1)(1−x)2 ∴dydx|x=0=(1−x)(−2n+1.0)−(1−0)(−1)(1−x)2 =1