If y2=ax2+bx+c, where a,b,c are constants, then y3d2ydx2 is equal to
Given,
y2=ax2+bx+c
On differentiating w.r.t. x we get
2ydydx=2ax+b
Again differentiating w.r.t. x we get
2(dydx)2+2yd2ydx2=2a
⇒yd2ydx2=a−(dydx)2
⇒yd2ydx2=a−(2ax+b2y)2⇒yd2ydx2=4ay2−(2ax+b)24y2
⇒4y3d2ydx2=4a(ax2+bx+c)−(4a2x2+4abx+b2)
⇒y3d2ydx2=4ac−b2⇒y3d2ydx2=4ac−b24=constant