The correct option is C P(x) P′′′(x)
From y2=P(x), we have 2yy1=P′(x), i.e.,
2y1=P′(x)/y
⇒2y2=yP′′(x)−P′(x)y1y2
=yP′′(x)−P′(x).P′(x)/2yy2
=2y2P′′(x)−(P′(x))22y3
⇒2y2y3=12[2P(x)P′′(x)−(P′(x))2]
Now, differentiating w.r.t. x on both sides,
⇒2ddx(y3d2ydx2)=12[2{P′(x) P′′(x)+P(x) P′′′(x)}−2P′(x) P′′(x)]
=12.2P(x) P′′′(x)=P(x) P′′′(x)