If y2=P(x) is a polynomial of degree 3, then 2(ddx)(y3.d2ydx2) is equal to
A
P′′′(x)+P′(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
P′′(x).P′′′(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
P(x).P′′′(x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A constant
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BP(x).P′′′(x) y2=P(x) P(x) is a polynomial of degree 3 y2=P(x) 2ydydx=P′(x) 2yd2ydx2+2(dydx)2=P′′(x) d2ydx2=P′′(x)−2[P′(x)2y]22y y3d2ydx2=y3P′′(x)2y−y3[P′(x)]24y3 =y2P′′(x)2−[P′(x)]24 [y3d2ydx2]=P(x)P′′(x)2−[P′(x)]24 2ddx[y3d2ydx2]=P′(x)P′′(x)+P(x)P′′′(x)−P′(x)P′′(x) =P(x)P′′′(x)