If y = 3 cos (log x)+4 sin (log x), show that x2y2+xy1+y=0.
Given, y = 3 cos (log x)+4 sin (log x) ....(i)
Differentiating w.r.t. x, we get
dydx=y1=−3 sin (log x)ddx (log x)+4 cos(log x)ddx log x =−3 sin (log x)1x+4 cos (log x)1x (∵ dydx=y1)Multiplying by x,we get xy1=−3 sin (log x)+4 cos (log x) ...(ii)Again differentiating w.r.t. x,we obtainxy2+y1.1=−3 cos (log x)ddx(log x)−4 sin (log x)ddx log x =−3 cos (log x) 1x−4 sin (log x)1xMultiplying throughout by x,we havex2y2+xy1=−3(3 cos (log x)+4 sin (log x)) [from Eq.(i)]⇒ x2y2+xy1=−y ⇒ x2y2+xy1+y=0