If y = 3 cos (log x) + 4 sin (log x), show that x2y2+xy1+y=0
where y1 & y2 are the successive derivatives of y.
y=3 cos(log x)+4 sin(logx)y1=−3sin(log x)x+4cos(log x)x⇒xy1=−3sin(log x)+4 cos(log x)y2=dy1dx=x(−3cos(log x)x−4sin(log x)x)−1.(−3 sin(log x)x+4 cos(log x)x)x2⇒y2=−(3 cos(log x)+4 sin(log x))−(−3 sin(log x)+4 cos(log x)x)x2⇒x2y2=−(y)−(y1)⇒x2y2+y1+y=0