wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=3e2x+2e3x.prove that d2ydx25dydx+6y=0.

Open in App
Solution

Given : y=3e2x+2e3x
dydx=3e2x×2+2e3x×3=6e2x+6e3x
dydx=6e2x+6e3x
d2ydx2=6e2x×2+6e3x×3
=12e2x+18e3x
Consider, d2ydx25dydx+6y
=12e2x+18e3x5(6e2x+6e3x)+6(3e2x+2e3x)
=12e2x+18e3x30e2x30e3x+18e2x+12e3x
=30e2x+30e3x30e2x30e3x=0
Hence, d2ydx25dydx+6y=0

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon