Differentiate y=Asinx+Bcosx with respect to x.
dydx=Acosx−Bsinx
Again differentiate with respect to x.
d2ydx2=−Asinx−Bcosx
d2ydx2=−(Asinx+Bcosx)
d2ydx2=−y
d2ydx2+y=0
If y=eax. cos bx, then prove that d2ydx2−2adydx+(a2+b2)y=0