If y=∣∣ ∣∣f(x)g(x)h(x)lmnabc∣∣ ∣∣,prove that dydx=∣∣ ∣∣f′(x)g′(x)h′(x)lmmabc∣∣ ∣∣
Given, y=∣∣ ∣∣f(x)g(x)h(x)lmnabc∣∣ ∣∣Expand along R1⇒ y=(mc−nb)f(x)+(na−lc)g(x)+(lb−ma)h(x)Differentiating w.r.t. x,⇒ dydx=(mc−nb)f′(x)+(na−lc)g′(x)+(lb−ma)h′(x)=∣∣ ∣∣f′(x)g′(x)h′(x)lmmabc∣∣ ∣∣
Alternative to differentiate a determinant, we differentiate one row (on one column)at a time, keepping other unchange.
y=∣∣ ∣∣f(x)g(x)h(x)lmnabc∣∣ ∣∣
Differentiating w.r.t. x, we get
dydx=∣∣ ∣∣f′(x)g′(x)h′(x)lmmabc∣∣ ∣∣+∣∣ ∣∣f(x)g(x)h(x)000abc∣∣ ∣∣+∣∣ ∣∣f(x)g(x)h(x)lmn000∣∣ ∣∣=∣∣ ∣∣f′(x)g′(x)h′(x)lmnabc∣∣ ∣∣