wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=1cosx1+cosx, then find the value of dydx.

Open in App
Solution

Given: y=1cosx1+cosx
dydx=ddx(1cosx1+cosx)
=(1+cosx)ddx(1cosx)(1cosx)ddx(1+cosx)(1+cosx)2
=(1+cosx)(sinx)+(1cosx)(sinx)(1+cosx)2=sinx+sinxcosx+sinxsinxcosx(1+cosx)2
dydx=sinx+sinx(1+cosx)2
=2×2sinx2cosx2(2cos2x2)2=44×sinx2cosx2×1cos2x2
=tanx2sec2x2
ddx(1cosx1+cosx)=tanx2sec2x2

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon