If y=cos2xcos3x, then yn is equal to Where, yn denotes the nth derivative of y.
A
6ncos(2x+nπ2)cos(3x+nπ2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12[5ncos(nπ2+5x)+cos(nπ2+x)]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
12[5nsin(5x+nπ2)+sin(x+π2)]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D12[5ncos(nπ2+5x)+cos(nπ2+x)] y=12(2cos2xcos3x) y=12(cos5x+cosx) y1=12(−5sin5x−sinx) y1=12(5cos(π2+5x)+cos(π2+x)) y2=12(−52sin(π2+5x)−sin(π2+x)) y2=12(52cos(π+5x)+cos(π+x)) y3=12(53cos(3π2+5x)+cos(3π2+x)) It is observed that with each consecutive derivative, π2 can be added to the argument of both terms in the bracket for generalization. ∴yn=12(5ncos(nπ2+5x)+cos(nπ2+x))