wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos(mcos1x), show that (1x2)d2ydx2xdydx+m2y=0.

Open in App
Solution

y=cos(mcos1x)
dydx=sin(mcos1x)ddx(mcos1x)
dydx=1(cos(mcos1x))2m1x2
dydx=1y2m1x2 where y=cos(mcos1x)
(dydx)2=(1y2m1x2)2
(dydx)2=m21y21x2
(1x2)(dydx)2=m2(1y2)
(1x2)2dydx×d2ydx22x(dydx)2=m2×2ydydx
(1x2)2dydx×d2ydx22x(dydx)2=m2×2ydydx by dividing both sides by 2dydx
(1x2)d2ydx2xdydx+m2y=0
Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon