We've y=cos(m cos−1x)⇒dydx=−sin(m cos−1x)×m×(−1√1−x2)
⇒√1−x2dydx=msin(mcos−1x)
On squaring both sides, we get: (1−x2)(dydx)2=m2sin2(mcos−1x)=m2{1−cos2(mcos−1x)}
⇒(1−x2)(dydx)2=m2{1−y2}
On differentiating again w.r.t.x: (1−x2)2(dydx)×d2ydx2−2x(dydx)2=m2(−2ydydx)
⇒(1−x2)d2ydx2−xdydx=m2(−y)∴(1−x2)d2ydx2−xdydx+m2y=0.
Alternative: We've y=cos(m cos−1x)⇒dydx=−sin(m cos−1x)×m×(−1√1−x2)
⇒√1−x2dydx=msin(m cos−1x)
On differentiating again w.r.t. x:√1−x2d2ydx2−2x2√1−x2×dydx=mcos(m cos−1x)×−m√1−x2
⇒(1−x2)d2ydx2−xdydx=−m2y∴(1−x2)d2ydx2−xdydx+m2y=0.