wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos(m cos1x), show that (1x2)d2ydx2xdydx+m2y=0.

Open in App
Solution

We've y=cos(m cos1x)dydx=sin(m cos1x)×m×(11x2)
1x2dydx=msin(mcos1x)
On squaring both sides, we get: (1x2)(dydx)2=m2sin2(mcos1x)=m2{1cos2(mcos1x)}
(1x2)(dydx)2=m2{1y2}
On differentiating again w.r.t.x: (1x2)2(dydx)×d2ydx22x(dydx)2=m2(2ydydx)
(1x2)d2ydx2xdydx=m2(y)(1x2)d2ydx2xdydx+m2y=0.
Alternative: We've y=cos(m cos1x)dydx=sin(m cos1x)×m×(11x2)
1x2dydx=msin(m cos1x)
On differentiating again w.r.t. x:1x2d2ydx22x21x2×dydx=mcos(m cos1x)×m1x2
(1x2)d2ydx2xdydx=m2y(1x2)d2ydx2xdydx+m2y=0.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parametric Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon