If y=|cos x|+|sin x| then dydx at x=2π3 is:
12(√3+1)
2(√3−1)
12(√3−1)
14(√3−1)
Since sinx is positive and cosx is negative in the second quadrant, y=−cos x+sin x ⇒dydx=sinx+cosx dydx at 2π3=12(√3−1)