wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xsinx1+x+x2, Find the dydx

Open in App
Solution

y=xsinx1+x+x2
(1+x+x2)y=xsinx
Let u=xsinx
logu=logxsinx by applying log to both sides.
logu=sinxlogx using logam=mloga
1ududx=sinxx+logxcosx
dudx=u(sinxx+cosxlogx)
ddx(xsinx)=xsinx(sinxx+cosxlogx)
(1+x+x2)dydx+(1+2x)y=ddx(xsinx)
(1+x+x2)dydx=xsinx(sinxx+cosxlogx)(1+2x)y
dydx=sinxxsinx1+xsinxcosxlogxy2xy1+x+x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon