If y=(a−x)√a−x−(b−x)√x−b√a−x+√x−b, then find dydx wherever defined.
A
2x−(a+b)2√(a−x)(x−b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2x−(a+b)4√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2x+(a+b)2√(a−x)(x−b)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2x−(a+b)2√(a−x)(x−b) Here, y=(a−x)3/2+(x−b)3/2(a−x)1/2+(x−b)1/2, use a3+b3=(a+b)(a2−ab+b2) y={(a−x)1/2+(x−b)1/2}{(a−x)−√(a−x)(x−b)+(x−b)}{(a−x)1/2+(x−b)1/2} ⇒y=(a−b)−√(ax+bx−ab−x2) ∴dydx=−(a+b−2x)2√(a−x)(x−b)⇒dydx=2x−(a+b)2√(a−x)(x−b)