If y=eax. cos bx, then prove that d2ydx2−2adydx+(a2+b2)y=0
y=eax.cosbx
dydx=aeax.cos bx−beax.sin bx...........(i)dydx=ay−beax.sin bxd2ydx2=adydx−b(aeax.sin bx+beax.cos bx)d2ydx2=adydx−baeax.sin bx−b2eax.cos bxd2ydx2=adydx−a(ay−dydx)−b2y
[Substituting beax sin bx from (i)]
d2ydx2=adydx−a2y+adydx−b2y∴d2ydx2−2adydx+(a2+b2)y=0
Hence Proved