wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=eaxcosbx, then prove that

d2ydx22adydx+(a2+b2)y=0

Open in App
Solution

y=eaxcosbx ... (i)

Differentiating (i) w.r.t. x, we get,

dydx=eaxacosbx+eax(sinbx)b

dydx=aybeaxsin bx

dydxay=beaxsinbx ... (ii)

Again differentiating w.r.t. x, we get,

d2ydx2adydx=beaxasinbxbeaxbcosbx

d2ydx2adydx=(beaxsinbx)ab2(eaxcosbx)

Using (i) and (ii), we have

d2ydx2adydx=(dydxay)ab2y

d2ydx22adydx+(a2+b2)y=0

flag
Suggest Corrections
thumbs-up
44
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon