y=eaxcosbx ... (i)
Differentiating (i) w.r.t. x, we get,
dydx=eaxacosbx+eax(−sinbx)b
⇒dydx=ay−beaxsin bx
⇒dydx−ay=−beaxsinbx ... (ii)
Again differentiating w.r.t. x, we get,
⇒d2ydx2−adydx=−beaxasinbx−beaxbcosbx
⇒d2ydx2−adydx=(−beaxsinbx)a−b2(eaxcosbx)
Using (i) and (ii), we have
⇒d2ydx2−adydx=(dydx−ay)a−b2y
⇒d2ydx2−2adydx+(a2+b2)y=0