wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=emsin1x, then (1x2)d2ydx2xdydxky=0, where k is equal to

A
m2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
m2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B m2
Given : y=emsin1x
dydx=emsin1xm1x2
dydx=memsin1x1x2 .... (i)
d2ydx2=memsin1x1x2×m1x2+memsin1x×(12)2x(1x2)32
d2ydx2=m2emsin1x(1x2)+(mxemsin1x(1x2)1x2)
Now, (1x2)d2ydx2xdydxky=0
(1x2)[m2emsin1x(1x2)+(mxemsin1x(1x2)1x2)]xm emsin1x1x2k emsin1x=0
m2emsin1x+mx emsin1x1x2xm emsin1x1x2k emsin1x=0
m2emsin1xk emsin1x=0
m2k=0
k=m2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon