wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=ea cos-1x, prove that 1-x2d2ydx2-xdydx-a2 y=0.

Open in App
Solution

Here,
y= ea cos-1xDifferentiating w.r.t. x, we getdydx= -ea cos-1x×a1-x2Differentiating again w.r.t. x, we getd2ydx2= ea cos-1x×a21-x2+2xa ea cos-1x21-x232d2ydx2=ea cos-1x×a21-x2+xa ea cos-1x1-x21-x2d2ydx2=y×a21-x2-xdydx1-x21-x2d2ydx2=a2y-xdydx1-x2d2ydx2+xdydx-a2y=0

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon