If y=1+x2tan-1x-x , then dydx=
tan-1x
2xtan-1x
2xtan-1x-1
Explanation for the correct option:
Finding the value of dydx:
Given,
y=1+x2tan-1x-x
Now, differentiate with respect to x.
Then,
dydx=2xtan-1x+1+x211+x2-1[∵d(uv)dx=u'v+v'u,ddx(tan-1x)=11+x2]=2xtan-1x+1-1=2xtan-1x
Hence, the correct option is B.