If y=f(x) is a differentiable function of x, then show that d2xdy2=−(dydx)−3.d2ydx2
Open in App
Solution
If y=f(x) is a differentiable function of x such that inverse function x=f−1(y) exists, then dxdy=1(dydx). where dydx≠0 ∴d2xdy2=ddx(dxdy) =ddy⎡⎢⎣1(dydx)⎤⎥⎦ =dDx(dydx)−1×dxdy =−1(dydx)−2⋅ddx(dydx)×1(dydx) =−(dydx)−2⋅d2ydx2⋅(dydx)−1 ∴d2xdy2=−(dydx)−3⋅d2ydx2