wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=2a2b2tan1(aba+btanx2), prove that dydx=1a+bcosxa>b>0

Open in App
Solution

dydx=2aba+b(sec2x22)a2b2(1+(ab)tan2x2a+b)
dydx=sec2x2(a+b)(1+(ab)tan2x2a+b)
dydx=sec2x2(a+b)+(ab)tan2x2
dydx=sec2x2a(1+tan2x2)+b(1tan2x2)
dydx=1a(cos2x2+sin2x2)+b(cos2x2sin2x2)
dydx=1a+bcosx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon