1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Algebra of Derivatives
If y = 2/√a...
Question
If
y
=
2
√
a
2
−
b
2
tan
−
1
(
√
a
−
b
a
+
b
tan
x
2
)
, prove that
d
y
d
x
=
1
a
+
b
cos
x
′
a
>
b
>
0
Open in App
Solution
d
y
d
x
=
2
√
a
−
b
a
+
b
∗
(
s
e
c
2
x
2
2
)
√
a
2
−
b
2
∗
(
1
+
(
a
−
b
)
t
a
n
2
x
2
a
+
b
)
d
y
d
x
=
s
e
c
2
x
2
(
a
+
b
)
∗
(
1
+
(
a
−
b
)
t
a
n
2
x
2
a
+
b
)
d
y
d
x
=
s
e
c
2
x
2
(
a
+
b
)
+
(
a
−
b
)
t
a
n
2
x
2
d
y
d
x
=
s
e
c
2
x
2
a
(
1
+
t
a
n
2
x
2
)
+
b
(
1
−
t
a
n
2
x
2
)
d
y
d
x
=
1
a
(
c
o
s
2
x
2
+
s
i
n
2
x
2
)
+
b
(
c
o
s
2
x
2
−
s
i
n
2
x
2
)
d
y
d
x
=
1
a
+
b
c
o
s
x
Suggest Corrections
0
Similar questions
Q.
Find
d
y
d
x
, if
y
=
tan
−
1
(
a
cos
x
−
b
sin
x
b
cos
x
+
a
sin
x
)
,
a
b
tan
x
>
−
1
Q.
If
, for some
prove that
is a constant independent of
a
and
b
.