wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(cot1x)2, then show that (1+x2)2d2ydx2+2x(1+x2)dydx=2.

Open in App
Solution

y=(cot1x)2
y1=dydx=ddx(cot1x)2
y1=2cot1x1+x2 y1=ddx(cot1x)2
(1+x2)y1=2cot1xy2=d2(cot1x)2dx2
squaring both the sides
(1+x2)2y21=4(cot1x)2
differentiating w.r.t x
2(1+x2)2x=y21+(1+x2)22y,y2=4×ddx(cot1x)2
substituting (i)
2(1+x2)2x.y21+(1+x2)22y1y2=4.y1
2y1[2x(1+x2)y1+(1+x2)y2]=4y1
(1+x2)2y2+2x(1+x)2y1=2
(1+x2)2.d2ydx2+2x(1+x2)dydx=2
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon