CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

If y=(23cosxsinx), find dydx at x=π4 

 


Solution

We have,

y=23cosxsinx

dydx=ddx(23cosxsinx)

=ddx(2cosecx=3cosx)

=2ddx(cosecx)33ddx(cotx) 

=2cosecx.cotx+3cosec2xdydx at x=π4

=2cosecπ4.cotπ4+3cosec2π4

=221+3.2

=22+6

=622

flag
 Suggest corrections
thumbs-up
 
0 Upvotes


Similar questions
View More


Same exercise questions
View More


People also searched for
View More



footer-image