If y(n)=exex2...exn,0<x<1. Then limn→∞dy(n)dx at x=12 is
y(n)=ex+x2+...+xn=ex(1−xn)1−x So dy(n)dx=ex(1−xn)1−x×ddx(x(1−xn)1−x) limn→∞dy(n)dx=limnex1−x−xn+11−xddx[limn→∞x1−x−xn+11−x] =ex1−xddx(x1−x) =ex1−x1(1−x)2 limn→∞dy(n)dx|x=12=4e