The correct option is D (xdydx−y)2
∵y=x ln(xa+bx)x=x(In x−In(a+bx))
or (yx)=In x−In(a+bx)
Differentiating both sides w.r.t. x, then
xdydx−y.1x2=1x−ba+bx=ax(a+bx)...(i)
or (xdydx−y)=(axa+bx)
Again taking logarithm on both sides, then
ln(xdydx−y)=ln(ax)−ln(a+bx)
Differentiating both sides w.r.t. x, then
xd2ydx2+dydx−dydx(xdydx−y)=1x−ba+bx=ax(a+bx)
=(xdydx−y)x2 [from Eq. (i)]
or x3d2ydx2=(xdydx−y)2