Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
If y log 1+co...
Question
If y log (1 + cos x), prove that
d
3
y
d
x
3
+
d
2
y
d
x
2
·
d
y
d
x
=
0
Open in App
Solution
Here,
y
=
log
1
+
cos
x
Differentiating
w
.
r
.
t
.
x
,
we
get
d
y
d
x
=
-
sin
x
1
+
cos
x
Differentiating
again
w
.
r
.
t
.
x
,
we
get
d
2
y
d
x
2
=
-
cos
x
-
cos
2
x
-
sin
2
x
1
+
cos
x
2
=
-
cos
x
+
1
1
+
cos
x
=
-
1
1
+
cos
x
Differentiating
again
w
.
r
.
t
.
x
,
we
get
d
3
y
d
x
3
=
-
sin
x
1
+
cos
x
2
⇒
d
3
y
d
x
3
+
sin
x
1
+
cos
x
2
=
0
⇒
d
3
y
d
x
3
+
-
1
1
+
cos
x
-
sin
x
1
+
cos
x
=
0
⇒
d
3
y
d
x
3
+
d
2
y
d
x
2
×
d
y
d
x
=
0
Suggest Corrections
0
Similar questions
Q.
d
3
y
d
x
3
+
d
2
y
d
x
2
+
d
y
d
x
+
y
sin
y
=
0
Q.
If y = e
x
(sin x + cos x) prove that
d
2
y
d
x
2
-
2
d
y
d
x
+
2
y
=
0
.
Q.
If
y
=
cos
x
+
cos
x
+
cos
x
+
.
.
.
to
∞
, prove that
d
y
d
x
=
sin
x
1
-
2
y
Q.
If y = ae
2x
+ be
−x
, show that,
d
2
y
d
x
2
-
d
y
d
x
-
2
y
=
0
.
Q.
d
3
y
d
x
3
+
d
2
y
d
x
2
3
+
d
y
d
x
+
4
y
=
sin
x
View More
Related Videos
Higher Order Derivatives
MATHEMATICS
Watch in App
Explore more
Higher Order Derivatives
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app