wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=log 1+tan x1-tan x, prove that dydx=sec 2x.

Open in App
Solution

Let y=log1+tanx1-tanxy=log1+tanx1-tanx12y=12log1+tanx1-tanxy=12log1+tanx-log1-tanxdydx=12ddxlog1+tanx-ddxlog1-tanx =1211+tanx×ddx1+tanx-11-tanx×ddx1-tanx =1211+tanx0+sec2x-11-tanx0-sec2x =12sec2x1+tanx+sec2x1-tanx =12sec2x1-tanx+1+tanx1-tan2x =12sec2x21-tan2x =sec2x1-tan2x =1+tan2x1-tan2x =11-tan2x1+tan2x =1cos2x =sec2x

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon