If y=log1+x1-x14-12tan-1x , then dydx
x21-x4
2x21-x4
x221-x4
none of these
Find the dydx:
Given that, y=log1+x1-x14-12tan-1x
Using the property of logarithmic i.e.; logab=bloga.
y=14log1+x1-x-12tan-1x
Now differentiate y with respect to x using quotient rule i.e.; duvdx=vdudx-udvdxv2.
dydx=14(1-x)(1+x)×[(1-x)+(1+x)](1-x)2-12×11+x2=14(1-x)(1+x)×2(1-x)2-12×11+x2=121(1+x)1-x-12×11+x2=1211-x2-12×11+x2=121+x2-1+x21-x21+x2=x21-x4
Hence, option A is correct.