wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=logx2+x+1x2-x+1+23tan-13 x1-x2, find dydx.

Open in App
Solution

We have, y=logx2+x+1x2-x+1+23tan-13x1-x2
Differentiating with respect to x using chain rule,
dydx=ddxlogx2+x+1x2-x+1+23ddxtan-13x1-x2dydx=1x2+x+1x2-x+1ddxx2+x+1x2-x+1+2311+3x1-x22ddx3x1-x2dydx=x2-x+1x2+x+1x2-x+1ddxx2+x+1-x2+x+1ddxx2-x+1x2-x+12+231-x221+x4-2x2+3x2 1-x2ddx3x-3xddx1-x21-x22dydx=1x2+x+1x2-x+12x+1-x2+x+12x-1x2-x+1+231-x221+x2+x41-x23-3x-2x1-x22dydx=2x3-2x2+2x+x2-x+1-2x3-2x2-2x+x2+x+1x4+2x2+1-x2+233-3x2+23x21+x2+x4dydx=-2x2+2x4+x2+1+23x2+131+x2+x4dydx=21-x2x4+x2+1+2x2+11+x2+x4dydx=21-x2+x2+11+x2+x4dydx=41+x2+x4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon