wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=Peax+Qebx, show that d2ydx2(a+b)dydx+aby=0.

Open in App
Solution

y=Peax+Qebx --- (1)
dydx=aPeax+bQebx --- (2)

d2ydx2=a2Peax+b2Qebx --- (3)
Multiplying (1) by ab, we get
aby=abPeax+abQebx ---(4)
Multiplying (2) by (a + b), we get
(a+b)dydx=(a+b)(aPeax+bQebx)=(a2Peax+b2Qebx)+(abPeax+abQebx)
Or, (a2Peax+b2Qebx)(a+b)dydx+(abPeax+abQebx)
Or, d2ydx2(a+b)dydx+aby=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon