Sol. y=Peax+Qebx ....(1)y=Peax+Qebx ....(1)
dydx=aPeax+bQebx ....(2)dydx=aPeax+bQebx ....(2)
d2ydx2=a2Peax+b2Qebx ....(3)d2ydx2=a2Peax+b2Qebx ....(3)
multiplying ... (1) by abmultiplying ... (1) by ab
we get, aby=abPeax+abQebx ....(4)we get, aby=abPeax+abQebx ....(4)
multiplying (2) by (a+b)multiplying (2) by (a+b)
we get, (a+b) dydx=(a+b)(aPeax+bQebx)=(a2Peax+b2Pebx)+(abPeax+abQebx)we get, (a+b) dydx=(a+b)(aPeax+bQebx)=(a2Peax+b2Pebx)+(abPeax+abQebx)
or.(a2Peax+b2Qebx)−(a+b) dydx +(abPeax+abQebx)or.(a2Peax+b2Qebx)−(a+b) dydx +(abPeax+abQebx)
or, d2ydx2−(a+b) dydx+aby =0